您的位置 首页 精密加工

高精密内腔加工,高精密内腔加工工艺流程

大家好,今天小编关注到一个比较有意思的话题,就是关于高精密内腔加工的问题,于是小编就整理了3个相关介绍高精密内腔加工的解答,让我们一起看看吧。

为什么熔模制造是最有代表性的的精密铸造方法?

熔模铸造最大的优点就是由于熔模铸件有着很高的尺寸精度和表面光洁度,所以可减少机械加工工作,只是在零件上要求较高的部位留少许加工余量即可,甚至某些铸件只留打磨、抛光余量,不必机械加工即可使用。

高精密内腔加工,高精密内腔加工工艺流程

由此可见,采用熔模铸造方法可大量节省机床设备和加工工时,大幅度节约金属原材料。

熔模铸造方法的另一优点是,它可以铸造各种合金的复杂的铸件,特别可以铸造高温合金铸件。

如喷气式发动机的叶片,其流线型外廓与冷却用内腔,用机械加工工艺几乎无法形成。

用熔模铸造工艺生产不仅可以做到批量生产,保证了铸件的一致性,而且避免了机械加工后残留刀纹的应力集中

高科技电子产品?

骨传导耳机

传统的耳机我相信大家都不陌生,不管是传统的入耳式的,还是头戴式的,戴的时间只要长了,都会让耳朵产生不适感。

现在有一种新的耳机,叫骨传导耳机,耳机整体非常轻巧,而且只需要把听筒的位置放在耳骨外侧,就可以通过共振传递声音了。

佩戴起来非常的舒适,时间再久也不会对耳朵产生任何的影响,而且相对于传统的耳机,骨传导耳机对于听力的伤害也会较小。

简述ICP的形成原理及优缺点。?

原理的分析过程主要分三步,即激发、分光和检测。其一,激发光源使试样蒸发汽化,离解或分解为原子状态,原子也可能进一步电离成离子状态。原子及离子在光源中激发发光;其二,利用分光器把光源发射的光色散为按波长排列的光谱;其三,利用光电器件检测光谱,按所测得的光谱波长对试样进行定性分析,或按发射光强度进行定量分析。

 

 

又有哪些优缺点

 

  其优点还是很多且相当明显的。其一,它可以同时检测同一样品的多种元素,具备多元素同时检出能力。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。其二,分析速度快,可以在几分钟内对几十个元素进行定量测定,不需要经过化学处理。其三,选择性好,可以应用于一些化学性质相似的元素的分析,分辨出不同的元素。其四,检出限低,准确度高,可广泛应用于多个领域。其五,无需过多样品,适用于整批样品的多组分测定。

ICP是利用高频加热原理。当在感应线圈上施加高频电场时,由于某种原因(如电火花等)在等离子体工作气体中部分电离产生的带电粒子在高频交变电磁场的作用下做高速运动,碰撞气体原子,使之迅速、大量电离,形成雪崩式放电,电离的气体在垂直于磁场方向的截面上形成闭合环形的涡流,在感应线圈内形成相当于变压器的次级线圈并同相当于初级线圈的感应线圈耦合,这种高频感应电流产生的高温又将气体加热、电离,并在管口形成一个火炬状的稳定的等离子体焰矩。

其特点如下:(1)工作温度高、同时工作气体为惰性气体,因此原子化条件良好,有利于难熔化合物的分解及元素的激发,对大多数元素有很高的灵敏度。(2)由于趋肤效应的存在,稳定性高,自吸现象小,测定的线性范围宽。(3)由于电子密度高,所以碱金属的电离引起的干扰较小。(4)ICP属无极放电,不存在电极污染现象。(5)ICP的载气流速较低,有利于试样在中央通道中充分激发,而且耗样量也较少。(6)采用惰性气体作工作气体,因而光谱背景干扰少。

到此,以上就是小编对于高精密内腔加工的问题就介绍到这了,希望介绍关于高精密内腔加工的3点解答对大家有用。

热门文章